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ABSTRACT

A fiber-reinforced ceramic subject to tensile stress in the fiber

direction can undergo extensive matrix cracking normal to the fibers, while the

fibers remain intact. In this paper, the critical conditions for the onset of

widespread matrix cracking are studied analytically on the basis of fracture-

mechanics theory. Two distinct situations concerning the fiber-matrix

interface are contemplated: (i) unbonded fibers initially held in the matrix

by thermal or other strain mismatches, but susceptible to frictional slip,

and (ii) fibers that initially are weakly bonded to the matrix, but may be

debonded by the stresses near the tip of an advancing matrix crack. The

results generalize those of the Aveston-Cooper-Kelley theory for case (i).

Optimal thermal strain mismatches for maximum cracking strength are studied,

and theoretical results are compared with experimental data for a iC fiber,

lithium-alumina-silicate glass matrix composite.
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Id critical debonding energy-release rate

A critical mode-I matrix energy-release rate

K critical mode-I matrix stress-intensity factor (-uE */(l-V 2 ))
m ism m

9,d  fiber debond length
d

Ie fiber slip length

q fiber-matrix interface pressure

)coefficient of friction

Vf* V m fiber, matrix Poisson ratios

T interface slipping shear stress

INTRODUCTION

Fiber-reinforced ceramic materials have promising potential for high-

temperature applications (Preyo and Brennan, 1980). Under tensile loading of

the composite in the fiber direction, the brittle matrix can undergo extensive

cracking normal to the fibers, but the associated matrix cracking stress may be

substantially greater than the catastrophic fracture stress of the unreinforced

ceramic. Furthermore, with the fibers intact, the composite material can

continue to sustain additional load up to the fiber-bundle fracture stress. *

This behavior is illustrated by the schematic stress-strain curve shown in

Fig. 1. The slope of the initial straight portion of the curve is closely

approximated by the rule of mixtures based on matrix and fiber moduli. Extensive

matri) cracking, often involving a small stress drop, occurs at A , and the

matrix becomes permeated by many, more-or-less equally-spaced cracks that traverse

the full cross-section of the specimen. Under continued loading, the fibers

alone provide most of the subsequent stiffness. The ultimate strength would

ideally be associated with fracture of uniformly strong fibers, but in practice

* is degraded somewhat as fibers fracture sequentially rather than simultaneously

•."
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before the peak stress at B is reached.

In this paper, critical conditions for the onset of widespread matrix

cracking are studied theoretically on the basis of fracture-mechanics theory. ®r_

Two distinct situations concerning the fiber-matrix interfaces are considered:

(i) unbonded fibers held in the matrix by initial pressures due to thermal or

other strain mismatches, but susceptible to frictional.slip, and (ii) fibers

under initial radial tension that are weakly bonded to the matrix, but may be

debonded by the high stresses near the tip of an advancing matrix crack.

The study of case (I), which generalizes the well-known Aveston-Cooper-Kelly

(ACK) theory, (Aveston et al., 1971 ; Aveston and Kelly, 1973; Kelly, 1976;

Aveston and Kelly, 1980; Hannant et al., 1983) is based on the analysis of

steady-state crack growth in the matrix. The concept adopted (slightly different

from that of ACK) is that a "first" planar crack will propagate across the

composite under an applied stress that becomes constant during the propagation

as soon as the crack engulfs more than a few fibers. With dynamic effects

neglected, the stress associated with this steady-state cracking is equivalent

to the "first cracking" stress of ACK. (The initiation of growth of the most

critical flaw in the matrix could require a somewhat higher stress than that

associated with steady-state growth - hence the slight dip in the stress-strain

curve of Fig. 1.) Figure 2 illustrates the matrix crack as it proceeds across

the composite. With enough frictional resistance, no slip will occur at

the interfaces, as shown in Fig. 2(a). When slip does occur (Fig. 2(b)), the r
slip length along the fibers on either side of the crack can be expected to

approach an asymptotic value on the downstream side of the crack front.

The presumption that Coulomb friction provides the resistance to fiber

slip implies that positive fiber-matrix pressures are imposed by strain

I
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mismatches that occur during the fabrication process. It does not however

follow that increasing such mismatches would necessarily raise the matrix cracking

stress, despite the larger frictional resistance thereby provided. The same

strein mismatches also generally lead to initial axial tensile stresses which act

to reduce the cracking strength. Accordingly, optimal strain mismatches can be

expected to exist, and these will be estimated.

In the case of bonded fibers, the matrix cracking strength will depend on

the debonding toughness of the interface. In the presence of sufficiently high

debonding toughness, the first matrix crack will propagate in a manner

Indistinguishable from that of the no-slip frictional case (Fig. 2(a)). If

debonding does occur, and the Interface pressure is negative (i.e., tensile

residual stresses exist between fiber and matrix) the debonded regions will open

up, and the crack will propagate as shown in Fig. 2(c). The steady-state

cracking calculation will be made for this case on the basis of an elementary

analysis of the debonding process near the advancing crack front.

ENERGY RELATIONS

A fairly general relation will be derived for the loss in potential energy

of a prestressed elastic body, within which, under constant additional load,

cracks develop and open up, and also sliding occurs along internal interfaces.

These relations will be used subsequently in the steady-state cracking 7:;

calculations. Figure 3 shows three states of the body. In state (0), the body

is free of external load, but contains an initial tensor stress distribution

ao in its volume V With the external vector tractions T applied to the

external boundary ST In state (1), the stress becomes o1 , and additional

displacements u1 , compatible with additional strains e1 are produced. The

body may now contain open cracks, as well as internal surfaces in which sliding

-1--
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has occurred. In state (2), with no change in T , more open cracking has

occurred, and additional frictional sliding has taken place along the interface

SF. The final stresses are now 02 , and the displacements and strains, still

measured from the ground state (0), are u2  and 2  We want to calculate

the potential energy loss (r 1-w2) associated with the transition from the

energy 7 in state (1) to I2 in state (2). The elastic constitutive

relations may be written

C M(-o o) (1) -

for the strain changes produced by 0 , where M is a linear operator. Then

7 - 00 : M(O0)dV (2)

V

r =  J l M(O1)dV " T'uldV (3)
V S T

W = 0J2 M(W2)dV - T-u2dV (4)

V S

In each case, the volume integral represents the elastic energy stored in the

body. Since a1 :(02) = 02: M(0i) , the energy loss may be written as

1 M(0 2 1

if - (oo) :l(0l-0)dV - -(u-u)dS (5)
1 2 2 Y 1 1 (y-2 J 12

V T

We now assume that in state (2), the shear tractions on S act in a direction
For

opposite to that of the relative sliding, and have constant magnitude " .

Then, by the principle of virtual work,

JT(u 1-u2)dS - 102: 1lO 1-0 2)dV - . J jAvjdS (6)

VST F ;,..
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where jAvI is the magnitude of the relative slip on SF that has occurred

during the transition from state (1) to state (2). Hence

I (ai 02) : H -0 )dV + T I lAvIdS (7)1 - 2 2  (1-1 2) 1 :Ma-2)V+

V SF

If we assume further that slip on S has been unvarying and monotonic in

direction during the transition to state (2), and that the sliding resistance

has always been equal to T , the frictional energy F dissipated (as heat)

is precisely the last integral in (7). Hence

it1- f 2 J(al-02) : (El-C 2)dV + EF (8)

V

under the stipulated assumptions. This result is clearly not valid under

conditions of variable-direction slip, or history-dependent frictional

resistance, during the transition from state (1) to state (2). It does remain

correct for pointwise variations in T

STEADY-STATE CRACKING RELATIONS

To apply the energy relations just developed, we contemplate a long matrix

crack of length s in a very wide specimen of width W and unit thickness, as

shown in Fig. 4. The crack extends through the thickness of the specimen, with

a straight front CC, but all of the fibers are intact. With no change in the

average applied stress a , the crack is presumed to advance an amount As to

C'C' . Now identify the initial uncracked and unloaded but possibly prestressed

state of the specimen with state (0), and let the states before and after the

crack advance As correspond to states (1) and (2). The assumption of steady-

state cracking means that the stresses at the crack front, averaged through the

thickness, remain unchanged during the crack growth, and also that the upstream and
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downstream stress states far ahead of and behind the crack front do not

change. Consequently, if we define PU and PD as the upstream and downstream

potential energies per unit cross sectional area of the composite, it follows .

that

r 1 - 2  - D)Ms (9)

Hence, the potential energy release rate (per unit crack extension, per unit

thickness) is

L
-P , (UD : (E -C )dAdz + - (10)

U D UT UL D U UDc -L A -'-c C

where U "U and OD , CD are the upstream and downstream stress and strain

distributions, and A is a representative cross-sectional area of the composite.

3 F°
Here -- is the frictional energy dissipation rate (per unit thickness)

associated with fiber-matrix slip.

In the case of unbonded, frictionally constrained, slipping fibers, the

energy-release rate PU-PD must be balanced by the sum of this frictional

energy dissipation rate and the critical matrix crack-extension energy-release

rate c 0~m per unit thickness of the composite. Hence the relation

L
1 A ((U-cD) -CD)dAdz cmtm (11)

CL A

governs matrix cracking, for both the slip and no-slip cases. If slip does

occur, the validity of this result requires that there be monotonically

increasing slip along each fiber.

In the case of initially bonded, debonding fibers, the frictional term in

(10) is absent, but now a debonding energy release absorbs part of P P
.... -D
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For a unit crack advance, the increment in debonded surface area per fiber is

2Tra d  on each side of the crack, and the number per unit area of newly debonded
d

fibers is cf/Va , so that the debonding energy release rate is 4cf(Zd/a). ,

Hence

LL (ED E)dAdz -C + 4cf( d/a),d (12)
(2AOD : (m-:dd f dm dn"

-L A
c

In order to implement (11) and (12) for the calculation of the cracking

stress, we now have to estimate o and , and for the debonding situationU" D

we also must estimate the debonding length Id

FIBER-MATRIX STRESS ANALYSIS

Upstream Stresses

Far ahead of the crack tip, the axial stresses in the fibers and the matrix

in the loaded composite are those of the uncracked material. The upstream

stresses are therefore well approximated by

U I"
af - (Ef/E)a + Of

(13) -
Cu =U (E /E)a + T (13

where C is the average applied stress, C and a are the initial axial
fm

stresses in the unloaded composite, and Ef , E are the fiber and matrix

Young's moduli. This approximation neglects the effects of transverse stresses

on axial strains , and is consistent with the rule-of-mixtures expression

E= cfE + c E (14)
f f m m

for the effective axial modulus of the composite. The initial and total stresses

satisfy

cfo + c y 0 (15)
f f m m

,o .
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and

C a +cO - (16)ff m m

respectively.

Downstream Stresses

Behind the crack tip, the average fiber and matrix axial stresses at the

crack face are 0f a 0/cf

m-o I(17)am  0

and for L>> a the stresses at z-L are given by Eqs. (13). Approximate

shear-lag analyses will provide the far-downstream stress distributions in

each of the cases shown in Fig. 2.

No-slip case -.

Far from the crack tip, an isolated composite-cylinder shear-lag model,

similar to that adopted by Aveston and Kelly (1973) will be used. Each fiber is

presumed to be embedded in a matrix cylinder of outer radius R chosen as

R- a/,r/ (18)
f

to provide the correct volume concentration of fibers (Fig. 5(a)). The model is

further simplified (Fig. 5(b)) by concentrating all of the axial-stress-carrying

area of the matrix at an effective radius R between a and R , and assuming

that the region in a< r< R supports only shear stresses T (r,z) . The
rz

equilibrium and constitutive relations in this region simplify to

DT T
rz +rz. 0 (19)

" - r-

T G - r (20)

where w(r,z) is the axial displacement, measured from the uncracked state.

It follows that
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rz (r, z) r ~iz (21)

where T(z is the interface shear stress, given by

G (w -w)
T i(z) MW Mmf (22)

a log(R/a)

in terms of the fiber and matrix displacements w f uw(a,z) and w m w(k,z)

Fiber equilibrium implies

- - -+ (±)t T 0 (23)

and since the composite cylinder is isolated, Eq. (16) remains valid.

Eliminating w mand wVf from

af aI dw

ff f
E f d z(24 

)

E-a dz

and Eqs. (16), (22), (23), and applying the boundary conditions (17) and (13)

at z- 0 and 1z1- respectively leads to the following results for the

downstream stresses:

a D C- U (c /C )a Ue-PjzI/a
f f mf m

D - M1 U -pizi/a (5a a -am (25m m
D -z U -l /

. (cl/Cf)a e-PZ

where
2G E 1/2

c ~E Ef log(R/a) j(6
If the fibers are held in the matrix by friction, this result is valid only if



the no-slip condition

D. . .+;1--
T k T (0:

s

or

+ (E/E )a' 1 5[cfE (27)

is met.

Slipping fibers

When the no-slip condition (27) is violated, frictional sliding between fiber

and matrix, with T T occurs in a length I on either side of the crack.

Then Eqs. (16), (17) and (23) imply that

a a/c 2T IZI/a
f f -

D (cf /C )T Izi/a (28)

of f } aa" -2(

m

T )T
"i 5 T

for 05 I zIS< , far downstream from the crack tip. Re-solving Eqs. (16),
-.

(21)-(23), now with the boundary conditions Tim T5  at tzju-X and, again,

(13) at IzI-= , leads to

2'T -l:(Izl-. la '

D U 2f - e-.
f

- P(II-zl)/aD - 1 fm (29)..-
m m -clf e

- (IZ-I£)a'-::
D =Z 'l- .'

for Izt> is Then imposition of the requirement that the axial stresses be

continuous at IzI I ts provides the equation

/a - f+E - 1 (30)

s 2T P
8

.............
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APPENDIX A

Estimate of Effective Radius R in Shear-Lag Model

Evaluation of the shearing energy contribution in Eq. (32) gives

2c f (+V) cc
log R a T dz (Al)

m

This relates to the simplified model of Fig. 5(b), but now let us return to the

configuration of Fig. 5(a), and contemplate a continuous shear lag model in which

the matrix stress a is distributed across the outer cylinder. Longitudinal
M

equilibvium implies
3 a (r rz)...,

r 0 (A2)

together with the boundary conditions

T (a) - ,..A-

T (R) 0 I-.
rz "

The assumed distribution

rl(Z) rc__l R2-r2  •o,,

Trz (rz) R a r (A4)

satisfies these boundary conditions. Substitution into (A2) gives

30

W 2(c, /c (T/a) (AS)az f m i/a

uniform in r , and this is consistent with the equilibrium requirements (23) and

(16). Accordingly, an appropriate solution for the z-distributions of the stresses

based on the principle of minimum complementary energy (which requires the use of

an equilibrium approximation) based on the assumption (A4) is legitimate. Except

for the definition of the characteristic parameter p ,this solution will be

identical to the one derived on the basis of the simplified model. The

..,-..
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propagation of matrix cracks into the fibers. The post-matrix-cracking strength

exhibited in Fig. 1 and the accompanying pseudo-ductility, would then be lost.
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0cr (fl :
m

Measured values of a gave

(Or~exp =290± 20 Pa

These results suggest the presence of a small initial axial compression.

This is consistent with observations reported by Marshall and Evans (1985) of

matrix crack closure, upon unloading, at small tensile loads. But initial axial

compression in the matrix would ordinarily be accompanied by tension normal to

the fiber-matrix interface. Accordingly, interfacial roughness rather than

Coulomb friction may have been the primary source of the interface shear

resistance In the Marshall-Evans experiments.

CONCLUDING REMARKS

The two idealized assumptions pursued herein concerning the fiber-matrix

Interface - frictionally constrained, sliding fibers and initially bonded,

debonding fibers - are not, of course, exhaustive. Combinations of these

possibilities could coexist, and interface roughness might play a more important

role than interface pressure in providing slipping resistance. Two interesting,

if tentative, conclusions can nevertheless be reached:

1. If Coulomb friction Is operative, optimal strain mismatches exist

that maximize the matrix cracking strength.

2. In the case of initially bonded fibers, a fairly small interface

debonding toughness d -h./5) suffices to inhibit debonding

during the matrix cracking process.

A final cautionary note: the inhibition of either debonding or slipping

may be quite undesirable despite the fact that the matrix cracking strength is

thereby Increased. Full maintenance of fiber-matrix continuity facilitates

* . . . . .-. • o% .. -. -, -, . ...... -,. -. %. . . • . .. -,*.,, - . -, . , . *.- o . -." ..-..- .-. .-. -.- . . ' " ,
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and this condition will generally be easily met. This means that as a function

of decreasing (kd/hb) the matrix cracking strength will drop abruptly from

its no-debond value when ( d/t) falls below its debond threshold value. This
d M

is illustrated in Fig. 12 for E /E 3 , V - 1/4 , and aI=m0 . It is
f M M m

interesting to note that once it drops from its no-debond value, 0 c remains

fairly insensitive to debond toughness until extremely low values of are
d

reached.

EXPERIMENTS

In some recent experiments, Marshall and Evans (1985) studied first-cracking

in a ceramic system consisting of silicon-carbide fibers in a lithium-alumino-

silicate glass matrix. The nominal values of pertinent parameters were

cf .5 ":"
Cf-

E 85 GPa E -142.5 GPa

Ef 200 GPa

v .25

-6a - 8.0xl0 m a

K = 2.0 MPa-ml/2

2 2
-44 N/m ( 1-VI)/E)

Push-through and indentation tests of individual fibers in composite samples gave

measured values of 2.0 MPa , suggesting that the frictional-slip model should

be applicable.

On the basis of the nominal data, Eqs. (38)-(40) give

a0 = 1625 MPa (B= .88)

I = 265 MPa

This puts 1 /CO .16 well within the large-slip range (Fig. 7), and so the
10r

theoretical prediction for the cracking stress is ,,

,'.,..." ".." .." .'~.....,..-................. •..- .. ..'.-...,-. ', . . .. C
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axis and each lower branch must be overcome. Since the debonded lengths along

the lower branches are quite small, it seems reasonable to presume the presence I-. !

of initial material flaws and imperfections that are equivalent to initially

debonded regions of similarly small size. Then crack-tip stresses would push

these effectively debonded lengths to the upper branches of the curves.

Threshold Bond Toughness

The function Q(X) In Fig. 9 attains a maximum value Q = 2.061 at

X M .9204. Since debonding can not occur for Q> Q , this critical value of

Q can be used in Eq. (62b) to obtain, as a function of cf threshold values

dm )  of the ratio of debonding to fracture toughness that would prevent

debonding. The results, shown in Fig. 11, indicate that a debonding toughness

that is quite small in comparison to matrix fracture toughness suffices to .',"

suppress crack-tip debonding over the practical range of fiber fraction.

Critical Cracking Stress

With the use of Eq. (36) for p , Eq. (55) for Ocr becomes

cr M /
m El ) E (ax)J

where B (Fig. 6) Is given by Eq. (39) as a function of cf, and Id/a is

defined as a function of cf and .d/ by Eqs. (62) and the upper branch of
f dm

the curve in Fig. 10. For (l~dlfm)> (/m)* , no debonding occurs, and the

old no-slip result cr+- 4 

- 1 applies. When debonding does occur, we can
0 mO0

expect the result (64) to provide a lower cracking strength than that for the

no-debond case. For (d/h ) <(d/. )  the right-hand side of (64) is certainly

less than unity if 2:" 1/2

('dif A& < A L 6El (65)d 4 .IEf (1+,VM)j 6:...
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The solution of (59), with the boundary conditions U( I tdt - 0 , permits the

calculation of the energy expression

V T I Jr(z)U(z)dz (60)

0

which represents the loss in potential energy of half of the loaded matrix jacket

due to debonding. Then the energy-release-rate relation

2iab (61)

d d

provides the condition governing Id " The result (Appendix C) is the pair of

parametric equations

1l-V 1/2

"/a(a + I m X (62a)
da f 8cf .

(1+ C-)3  1/2
c Lcf(1-v )J Q(x) (62b)d m 1287Tc m  

,.

m f m

relating Id/a to Jd/m , where

f X cosh s ds 2
qx-0 -r" 7

•cosh X (63)

is plotted in Fig. 9. 1 .

Note that Eqs. (62) imply that I d/a is not a single-valued function of

48d/& But from the energy-based derivation that led to this result, it follows

that combinations of Id/a and Id/m associated with the region to the left

of the curve in Fig. 9 are unstable, while those to the right are stable. The

implications of this are better seen in Fig. 10, which show, as examples,

explicit plots of Id/a vs. Ald/b for several values of cf . The upper

part of each curve represents stable debonded lengths, but for debonding to -71

occur at all an energy barrier associated with the region between the horizontal

7"%
.
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Debond Length Analysis

We suppose that stress changes in the vicinity of the crack tip debond

the fiber-matrix interface just ahead of the advancing crack for a distance L-
d

on each side of the plane of the crack. To estimate £d we will again adopt

a composite cylinder model in which we pretend that axisymmetric debonding is

produced by an axisywuetric distribution of load applied to the matrix cylinder

that jackets the fiber (Fig. 8). Conservatively, we take the magnitude of this
-. 4-

loading as the stress

K
a (z). (56)

and apply it at the mean radius R of the matrix jacket. Here
i( 2) ]1/2 """

Km - [E V / 2 ) 1  is the critical elastic stress-intensity factor of the

matrix, and (56) is just the asymptotic distribution of horizontal tension just

above the crack tip. The debond length Id will be calculated on the basis of

an energy balance involving the debonding toughness k and the energy

changes in the matrix during debonding. The deformation of the matrix will be

analyzed on the basis of thick-cylinder theory, in which only transverse shear

stresses and circumferential tension resist radial displacement. In terms of

the cylinder thickness

t R - a- a(cl-12 _) (57)
f

and the mean radius

R 'l2(R+a - +1)  (58)
2 2a ~(f +1

the differential equation governing the radial displacement U(z) at re R
m

is taken as

-Gt d + [a(z) (59).(z)
2 

,

... ... .. ... ... .. ... ... .. V2) r
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linear initial part of the curve in Fig. 7, justifying the use of Eq. (40) for

cr

There is an interesting connection between O and the mismatch 0
OPT Sc

for self-cracking of the matrix in the absence of external stress. Under the

assumption of large slip, self-cracking occurs when the right-hand side of (47)

vanishes, which implies that

a SC 3 3' 0OPT  (53)

MATRIX CRACKING: (ii) INITIALLY BONDED, DEBONDING FIBERS

Cracking Condition

We assume that there is initial transverse interface tension in the composite,

so that downstream from the crack tip, regions of the fiber-matrix interface that

have been debonded stay open.

The steady-state cracking condition (12) is then

2A
1 OUD 2+ cm ( U  D 2 1 1 (2r)drdz -c h' + fd /a),&

E - Om 2 GR2 - mm f ddi ecff f m 2RM--W a
(54)

where we will use (13), (31) for Iz1 <td , and (25), with I=z replaced by

(Izl - zd , for Izi > 1d " (As before, we ignore transverse-stress contributions

to strain energy.) This leads to the result

1/2

mI -(55)
where p is given by (36), but now we require an estimate for the debond

length id"
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are obtained.

If we anticipate that the optimum value of fl will lead to large-slip

matrix cracking, it is appropriate to use Eq. (40) for a Y with Tr.qcr

In Eq. (41). Then

1 lcf (47)

with q/E and 0r /E given by (45). For 12>0 a % will attain a maximum
m mc

value at 0 2 when the condition

f fin1  3i (48)
cmEzEa ~EjtJmm m m

Is met. Hence

X~ E(1-v)

nOPT 3Ef 2 (49)l/

and

6 Z1 2/ (5)

/A2 - f (51)j

(a) /E I )(-1/cr MAX 1EEmO E{ ) ElVij (O2)

At this opiu Thin vale will ienerallp bslenoughbseo to e fals ter nerl

OqP3),iT ivnb

3A 2 
-
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is valid for the sliding frictional resistance Ts , it follows that increasing

the strain mismatch would raise a1  as well as a Then Eq. (40) implies the
U, m

existence of an optimal strain that maximizes the externally applied cracking

stress acr . (However, the assumption of Coulomb friction is not necessarily

valid. Conceivably, T may be due primarily to interface roughness, in which
.

case the optimization study that follows is inapplicable.)

Suppose that non-elastic strains em  and ef occur isotropically in matrix L

and fiber during fabrication, and call
..f= (el-e) "

the strain mismatch. (If, for example, the mismatch is due only to thermal

strains, 1= (a f-a)AT , where AT is the temperature change, and t , Of are

the linear thermal expansions over the range AT . Note that fl is positive

if the matrix contracts more than the fiber during fabrication.)

For simplicity, we assume that both the fibers and the matrix are isotropic.

A straightforward analysis of the composite cylinder model of Fig. 5(a) then

gives

rc
Em 21 LlmJ

.1 [-.-..M

(45)

4A E

-2-.

where X are functions of cf , .f/Em , Vf, and V shown explicitly

1 2 m

in Appendix B. For cf l ,A 1, 2 - ,1 and both X and X will not vary

too much from unity for reasonable values of cf and Ef /E . If we assume

Vf V -v , the neat forms

S1 l-2v)(. )

(46)

2N 1 -(l-E/E) - T(l+E/Ef

"..."~~ f.-'. .2. f . ... .'.' ..."-'.'''.'.\..%..,%..,. .'.".".".", , . ,,.".. .: ,"" " ," ""'-'_ -"-,,"; - "" ,""""""
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Y *(42)

the results can be manipulated into the form

a0 + (E/E- ) 1

000
where (43)

-( 27 )1/6

In the range Y> 1 specified by the slip condition (27), Eqs. (43) are parametric

relations giving

(aY + E/E )CY I
cr m m

0

as the function of the independent variable (o1/o O) plotted in Fig. 7. For

Y- 1 (aIa 0 )31.3 1.442 and so for (aI/ao) > 31/3 the no-slip result

+r (/)01 " 1
09

applies. For Y , (i/o 0 ) 0 , and 0c+ (E/E )o approaches the large-slip

ACK value a, This large-slip result is a good approximation over the

substantial initial portion of the curve in Fig. 7 that is nearly linear. In

the slipping range, the slip length le may be found from Eq. (30).

Optimal Strain Mismatch

Mismatches between the non-elastic fiber and matrix strains that occur

during fabrication (e.g., due to cooling, plasticity, creep, or phase trans-

I
formation) will produce initial matrix stresses 0m as well as fiber-matrix

interface pressure q , and a positive q will generally go along with positive

* a. If a Coulomb friction law of the form

- iiq (44)IT S ..
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where

a 2 E 1/ 1/2
E [-c2E(+m)1 J (38)

When the estimate (34) is used for log i/a , we have

3 1/4

' [=-6 log c- 3c (3-cf)J

Then B 1 for cf*l , and, as shown in Fig. 6, B does not vary much from

unity over a large range of fiber concentration cf

The ACK results for slipping fibers (Aveston et al., 1972) can be recovered

D D
from Eq. (32) by substituting Eqs. (28) for af and a in ; dropping

fU

the shear contribution to the energy; neglecting all energy contributions in

jzj > t ; and dropping the (l/P) term from the formula (30) for I /a . (It

can be verified that these truncations are all asymptotically valid for I /a-ft.)

The result is
oI

r +Em 01 (40)
E E E

m

where

<,- r.E,.lr/ 3r&l"/3 (1

.I'm I
E" mm J L" N.

is equivalent to the ACK expression for the critical, large-slip cracking strain.

(Aveston et al. do not actually present a counterpart to Eq. (40); they derive

the cracking criterion 0c /E- 01/E for °Y m 0 , and separately, also deduce
cr 1 m

that aI/E- a1 /E is the condition for self-cracking in the absence of external

loading.)

To bridge between the no-slip and large--;lip ACK results, we can substitute

the full expressions (29) for jz a, together with (28) for z <ts

into (32). With Y defined by
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F Cf (,,U 2  D 2 --

f f) m m mJ T (trz) 2irdrdz - (32)
Da ao a

wherein, by Eq. (21), TD uD . (Here we neglect contributions to strain energy
rz

associated with downstream changes in transverse stress.) For the no-slip case

substitution of Eqs. (25) into (32) leads to the formula

1 cEfp 1/2

E +E, aE E (33)

for the cracking stress a . Except for the initial-stress term G_/E3 ,
cra

this is essentially the result originally given by Aveston and Kelly (1973) for

no-slip matrix cracking.

Aveston and Kelly do not specify R in the definition (26) for P , beyond

the unelaborated statement that R is equal to the radius at which the matrix

displacement equals its average value. On a different basis, the explicit

estimate
2 log c + c3 ( 3-c f )

log R/a - 34)

Cm

is derived in Appendix A. (This gives (R-a)/(R-a) * 1/3 for cf*I ; for

-3/4cf0 , (!-a)/(R-a)-e -  .47 .) If we introduce the utility constant

S = (35) ;

6 lo:: ,a"
into the definition of P , we get

12[ 6F 1p (1+vmill2  (36)

and we can rewrite (33) in the convenient form

cr +C 0 (37)

m 
o,

...... .. .. . ..... ".,
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for the slip length. For I a 0 this is consistent with the no-slip requirement

(27), and Eqs. (28), (29) are, of course, valid only for £ /a20 . For 1

larger than a few fiber radii, the contribution to I /a of the term (1/0) in

(30) will be small.

Initially bonded, debonding fibers

Now we suppose that debonding along a length I on either side of the crack
d

is produced near the crack tip by interface fracture, and that the debonded

regions remain open downstream of the crack tip. The axial and shear stresses in

O< Z<5d are simply

a D a/cf
'" D

a 0 (31)
m

"- D 0T o J
i

and for IzI td shear-lag analysis reproduces the results (25) from the no-slip

case, with Izi in the exponents simply replaced by (Izl - td) • We presume

that the interface shear stresses will not produce any additional debonding that

increases I beyond its crack-tip value.
d

Note that in contrast to the case of frictionally slipping fibers, the shear-

lag solution for debonded fibers involves a discontinuity in Ti  at I zj= d

MATRIX CRACKING: (i) UNBONDED, FRICTIONALLY CONSTRAINED FIBERS

Critical Cracking Stress

Using the stresses of the shear-lag model in the steady-state cracking

equation (11) gives (for L-o)

'. . . .. . . . . . . . . . . . .
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correspondence between the two solutions is easily found by replacing R by

R in the shear energy contribution in Eq. (32) and using (A4) for T .rz

This gives

2 G

With (RIa) 2 = (l/c) , comparison of (Al) and (A6) then provides the estimate

(34) for R/a

i- . . . . . .
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APPENDIX B
k.

Initial Stresses

By the classical Lame solution for the unloaded composite cylinder of

Fig. 5(a), the initial circumferential stresses 6ef and aem in the fiber -

and matrix at their interface are

O " -q(l+cf)I}

emf a

where q is the interface pressure. The conditions of interface strain

continuity are

1[a I v(oe, q) + em - f aef-q] + ef .

(B2)

1a V( I - +e 1 Vf(af-q)] + e
E eOm- a m-) m E ef- f+f

m f

lvia Eq. (15), and solution for o
Substitution of (B1), elimination of Of i -

fa

and q gives the results (45) of the text, with and X2 defined by

2
1- (l-E/El)(1-vf)/2+ c (v -vf)/2 - (E/Ef) [vf + (v-vf) cfEf/Ej

(1-v )A

.[1 - (l-E/Ef)/21 (l+Vf) + (l+cf) (v -vf) /2
"- f' f fA (B4)..

2 A

*where

. -1+ Vf + (v -vf)cfEf/E (B5)

" and E is given by (14). Setting V=vf gives Eqs. (46).

fm

U..

-. *P.' . ............ ...... * .. -*. . ... o-.......:..- ...

-:" " .""" . "''-,-%""-. -o' - 2
- ,-' * . . € ". . . ". ", ,"","" . "" '' . .. """"" " .'"." .". a" . ' "
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APPENDIX C

Debond-Length Analysis

Letting

1/21/} (Cl)

where ti

X (Jtd/R) [212(C2)

reduces the differential equation (59) to

Ucc+ u 0 (3)

and the boundary conditions become u( ±X) -0 *The energy-release-rate

condition (61) becomes

R-11/2 XJ.f)(; a~ l (C4) '
0 --

*For 0> the solution of Eq. (CM) is

- sinh( -r')dl~j csh~ C sinh(X-C')dC' (5
coshXJ

which gives
x

au cosh rcosh C l(6
ax cosh 2X AV0

Then (CO) provides the results (62), (63) of the text, when cf is introduced -

via Eqs. (57), (58).

For calculation purposes, the function Q(X) in Eq. (63) may be written in

terms of Dawson's integral
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D(Z) * - e z2~sdo (C7)

0 K

* which is tabulated and available In software. Thus

eD(X12 )+2 erf(X,1);

Q(X) 2 0ah ~ j(8)
Z 2

where erf (Z)m~ a e~ do For X large, Q'- l/X ,and for X small, Q- 4X
0~i
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Fig. 11 Threshold bond toughness (V 1/4) .
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Fig. 12 Matrix cracking strength versus debond toughness/matrix toughness

ratio; illustrative example IfIE /IIS 3, Vm 1/4 a a 0.
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